Abstract


Hepatitis merupakan kondisi peradangan pada hati yang disebabkan oleh berbagai jenis virus, baik yang menular maupun tidak menular, dan dapat menimbulkan komplikasi serius hingga kematian. Terdapat lima tipe utama virus hepatitis, yaitu A, B, C, D, dan E. Penelitian ini bertujuan untuk mengklasifikasikan penyakit Hepatitis C menggunakan algoritma K-Nearest Neighbor (KNN) dengan pendekatan penanganan data tidak seimbang melalui teknik Random Oversampling. Dataset yang digunakan adalah HCV dari UCI Machine Learning Repository, yang terdiri dari 615 data dengan 14 fitur dan 5 kategori kelas. Karena data bersifat tidak seimbang, dilakukan peningkatan jumlah data pada kelas minoritas menggunakan Random Oversampling. Proses evaluasi dilakukan dengan membandingkan performa KNN tanpa dan dengan oversampling, serta menentukan nilai K terbaik melalui skenario pengujian menggunakan 5-fold Cross Validation. Hasil menunjukkan bahwa KNN tanpa oversampling menghasilkan akurasi tertinggi sebesar 94% pada nilai K=3, sementara dengan oversampling akurasi meningkat menjadi 96,70% pada nilai K yang sama. Dengan demikian, dapat disimpulkan bahwa penerapan Random Oversampling mampu meningkatkan performa klasifikasi algoritma KNN pada data Hepatitis C yang tidak seimbang.

Keywords


Hepatitis C; Klasifikasi; K-Nearest Neighbor; Random Oversampling; Cross Validation