Analysis of Wear in UHMWPE Artificial Hip Joint Using Finite Element Method: A Review

Author


Mujib Wahyudi(1Mail), Achmad Zain Nur(2),
(1) Universitas Trunojoyo Madura, Indonesia
(2) Universitas Trunojoyo Madura, Indonesia

Mail Corresponding Author
Article Analytic
  [File Size: 404KB]  Language: en
Available online: 2024-12-30  |  Published : 2024-12-30
Copyright (c) 2025 Mujib Wahyudi, Achmad Zain Nur
Article can trace at:

Article Metrics

Abstract Views: 0 times PDF Downloaded: 0 times

Abstract


Ultra-high-molecular-weight polyethylene (UHMWPE) is one of the most commonly used materials in the fabrication of artificial hip joints due to its excellent mechanical properties, biocompatibility, and wear resistance. Despite its advantages, the wear of UHMWPE components over time leads to the generation of wear particles, which are responsible for osteolysis and implant failure. The Finite Element Method (FEM) has emerged as a powerful tool to simulate the wear mechanisms of UHMWPE in hip implants, providing a deeper understanding of the stress distribution, wear prediction, and optimization of implant designs. This review explores the current state of FEM applications in UHMWPE wear analysis, focusing on the material properties, wear mechanisms, FEM simulation models, and future directions in this research area.


Keywords


Artificial Hip Joint; Finite Element Method; Implant Design Optimization; UHMWPE; Wear Analysis; Wear Mechanisms

References


S. B. Goodman and J. Gallo, “Periprosthetic osteolysis: Mechanisms, prevention and treatment,” Dec. 01, 2019, MDPI. doi: 10.3390/jcm8122091.

A. M. Kandahari, X. Yang, K. A. Laroche, A. S. Dighe, D. Pan, and Q. Cui, “A review of UHMWPE wear-induced osteolysis: The role for early detection of the immune response,” Jul. 12, 2016, Sichuan University. doi: 10.1038/boneres.2016.14.

L. Mattei, F. Di Puccio, B. Piccigallo, and E. Ciulli, “Lubrication and wear modelling of artificial hip joints: A review,” Tribol Int, vol. 44, no. 5, pp. 532–549, May 2011, doi: 10.1016/j.triboint.2010.06.010.

L. Mattei, F. Di Puccio, and E. Ciulli, “A comparative study of wear laws for soft-on-hard hip implants using a mathematical wear model,” Tribol Int, vol. 63, pp. 66–77, 2013, doi: 10.1016/j.triboint.2012.03.002.

Y. Kumaran, J. M. Bonsu, S. Tripathi, S. M. Soehnlen, and C. E. Quatman, “Phase-specific changes in hip joint loading during gait following sacroiliac joint fusion: Findings from a finite element analysis,” Clinical Biomechanics, vol. 122, Feb. 2025, doi: 10.1016/j.clinbiomech.2025.106429.

F. Jahani et al., “Importance of dynamics in the finite element prediction of plastic damage of polyethylene acetabular liners under edge loading conditions,” Med Eng Phys, vol. 95, pp. 97–103, Sep. 2021, doi: 10.1016/j.medengphy.2021.07.010.

C. Luo et al., “Femoral Stress Changes after Total Hip Arthroplasty with the Ribbed Prosthesis: A Finite Element Analysis,” Biomed Res Int, vol. 2020, 2020, doi: 10.1155/2020/6783936.

V. Saikko, O. Morad, and R. Viitala, “Friction RandomPOD—A new method for friction measurement in noncyclic, multidirectional, dynamic pin-on-disk tests for orthopaedic bearing materials,” J Biomech, vol. 118, Mar. 2021, doi: 10.1016/j.jbiomech.2021.110273.

R. I. Taylor, “Rough Surface Contact Modelling—A Review,” May 01, 2022, MDPI. doi: 10.3390/lubricants10050098.

F. Liu, Y. He, Z. Gao, and D. Jiao, “Enhanced computational modelling of UHMWPE wear in total hip joint replacements: The role of frictional work and contact pressure,” Wear, vol. 482–483, Oct. 2021, doi: 10.1016/j.wear.2021.203985.

L. Wang, G. Isaac, R. Wilcox, A. Jones, and J. Thompson, “Finite element analysis of polyethylene wear in total hip replacement: A literature review,” Nov. 01, 2019, SAGE Publications Ltd. doi: 10.1177/0954411919872630.

L. Pisecky, G. Hipmair, B. Schauer, and N. Böhler, “Osteolysis in total hip arthroplasty after head and inlay revision surgery,” J Orthop, vol. 14, no. 1, pp. 192–194, Mar. 2017, doi: 10.1016/j.jor.2016.12.004.

S. M. Kurtz and J. D. Patel, 6 The Clinical Performance of Highly Cross-linked UHMWPE in Hip Replacements, Third Edit. Elsevier Inc., 2016. doi: 10.1016/B978-0-323-35401-1/00006-5.

L. Xiong and D. Xiong, “The influence of irradiation dose on mechanical properties and wear resistance of molded and extruded ultra high molecular weight polyethylene,” J Mech Behav Biomed Mater, vol. 9, pp. 73–82, 2012, doi: 10.1016/j.jmbbm.2012.01.002.

J. Schwiesau, B. Fritz, G. Bergmann, A. L. Puente Reyna, C. Schilling, and T. M. Grupp, “Influence of radiation conditions on the wear behaviour of Vitamin E treated UHMWPE gliding components for total knee arthroplasty after extended artificial aging and simulated daily patient activities,” J Mech Behav Biomed Mater, vol. 122, Oct. 2021, doi: 10.1016/j.jmbbm.2021.104652.

G. Chen, Z. Ni, S. Qian, and Y. Zhao, “Biotribological behaviour of Vitamin E-blended highly cross-linked UHMWPE in a hip joint simulator,” Industrial Lubrication and Tribology, vol. 68, no. 5, pp. 548–553, 2016, doi: 10.1108/ILT-09-2015-0130.

S. Yousef, A. Visco, G. Galtieri, D. Nocita, and C. Espro, “Wear behaviour of UHMWPE reinforced by carbon nano fi ller and paraf fi n oil for joint replacement,” Material Science and Engineering C, vol. 73, pp. 234–244, 2017, doi: 10.1016/j.msec.2016.11.088.

M. C. Galetz, S. H. Seiferth, B. Theile, and U. Glatzel, “Potential for adhesive wear in friction couples of UHMWPE running against oxidized zirconium, titanium nitride coatings, and cobalt-chromium alloys,” J Biomed Mater Res B Appl Biomater, vol. 93, no. 2, pp. 468–475, May 2010, doi: 10.1002/jbm.b.31604.

S. Sharma, J. Bijwe, S. Panier, and M. Sharma, “Abrasive wear performance of SiC-UHMWPE nano-composites - Influence of amount and size,” Wear, vol. 332–333, pp. 863–871, May 2015, doi: 10.1016/j.wear.2015.01.012.

A. de A. Lucas, J. D. Ambrósio, H. Otaguro, L. C. Costa, and J. A. M. Agnelli, “Abrasive wear of HDPE/UHMWPE blends,” Wear, vol. 270, no. 9–10, pp. 576–583, Apr. 2011, doi: 10.1016/j.wear.2011.01.011.

F. Ansari, M. D. Ries, and L. Pruitt, “Effect of processing, sterilization and crosslinking on UHMWPE fatigue fracture and fatigue wear mechanisms in joint arthroplasty,” Jan. 01, 2016, Elsevier Ltd. doi: 10.1016/j.jmbbm.2015.08.026.

E. Oral, K. K. Wannomae, N. Hawkins, W. H. Harris, and O. K. Muratoglu, “α-Tocopherol-doped irradiated UHMWPE for high fatigue resistance and low wear,” Biomaterials, vol. 25, no. 24, pp. 5515–5522, Nov. 2004, doi: 10.1016/j.biomaterials.2003.12.048.

V. Jangid, A. K. Singh, and A. Mishra, “Wear Simulation of Artificial Hip Joints: Effect of Materials,” 2019. [Online]. Available: www.sciencedirect.comwww.materialstoday.com/proceedings2214-7853

S. Shankar, L. Prakash, and M. Kalayarasan, “Finite element analysis of different contact bearing couples for human hip prosthesis,” 2013.

S. Shankar, R. Nithyaprakash, B. R. Santhosh, M. S. Uddin, and A. Pramanik, “Finite element submodeling technique to analyze the contact pressure and wear of hard bearing couples in hip prosthesis,” Comput Methods Biomech Biomed Engin, vol. 23, no. 8, pp. 422–431, Jun. 2020, doi: 10.1080/10255842.2020.1734794.

M. Al-Hajjar, J. Fisher, S. Williams, J. L. Tipper, and L. M. Jennings, “Effect of femoral head size on the wear of metal on metal bearings in total hip replacements under adverse edge-loading conditions,” J Biomed Mater Res B Appl Biomater, vol. 101 B, no. 2, pp. 213–222, 2013, doi: 10.1002/jbm.b.32824.

M. B. Cross, D. Nam, and D. J. Mayman, “Ideal Femoral Head Size in Total Hip Arthroplasty Balances Stability and Volumetric Wear,” HSS Journal, vol. 8, no. 3, pp. 270–274, Oct. 2012, doi: 10.1007/s11420-012-9287-7.

A. Ashkanfar, S. M. S. Toh, R. English, D. J. Langton, and T. J. Joyce, “The impact of femoral head size on the wear evolution at contacting surfaces of total hip prostheses: A finite element analysis,” J Mech Behav Biomed Mater, vol. 153, May 2024, doi: 10.1016/j.jmbbm.2024.106474.

O. L. A. Harrysson, Y. A. Hosni, and J. F. Nayfeh, “Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: Femoral-component case study,” BMC Musculoskelet Disord, vol. 8, 2007, doi: 10.1186/1471-2474-8-91.

O. Abdelaal, S. Darwish, H. El-Hofy, and Y. Saito, “Patient-specific design process and evaluation of a hip prosthesis femoral stem,” International Journal of Artificial Organs, vol. 42, no. 6, pp. 271–290, Jun. 2019, doi: 10.1177/0391398818815479.

Y. Jun and K. Choi, “Design of patient-specific hip implants based on the 3D geometry of the human femur,” Advances in Engineering Software, vol. 41, no. 4, pp. 537–547, 2010, doi: 10.1016/j.advengsoft.2009.10.016.

D. Scherb et al., “Optimizing the individual design of revision hip implants – evaluating the effects for bone and stem using patient-specific finite element models,” in DS 133: Proceedings of the 35th Symposium Design for X (DFX2024), The Design Society, 2024, pp. 015–024. doi: 10.35199/dfx2024.02.

A. Ruggiero and A. Sicilia, “Lubrication modeling and wear calculation in artificial hip joint during the gait,” Tribol Int, vol. 142, Feb. 2020, doi: 10.1016/j.triboint.2019.105993.

D. Dalli, J. Buhagiar, P. Mollicone, and P. Schembri Wismayer, “A novel hip joint prosthesis with uni-directional articulations for reduced wear,” J Mech Behav Biomed Mater, vol. 127, Mar. 2022, doi: 10.1016/j.jmbbm.2021.105072.

G. Srivastava, N. Christian, and C. Fred Higgs, “A predictive framework of the tribological impact of physical activities on metal-on-plastic hip implants,” Biotribology, vol. 25, Mar. 2021, doi: 10.1016/j.biotri.2020.100156.

J. E. Abu Qudeiri, A. Abdudeen, M. R. Sahadevan, and A. Padmanabhan M, “Numerical investigation on the wear characteristics of hip implant under static loading,” Heliyon, vol. 10, no. 4, Feb. 2024, doi: 10.1016/j.heliyon.2024.e26151.

J. Reginald, M. Kalayarasan, K. N. Chethan, and P. Dhanabal, “Static, dynamic, and fatigue life investigation of a hip prosthesis for walking gait using finite element analysis,” International Journal of Modelling and Simulation, vol. 43, no. 5, pp. 797–811, 2023, doi: 10.1080/02286203.2023.2212346.

D. Nečas, H. Usami, T. Niimi, Y. Sawae, I. Křupka, and M. Hartl, “Running-in friction of hip joint replacements can be significantly reduced: The effect of surface-textured acetabular cup,” Friction, vol. 8, no. 6, pp. 1137–1152, Dec. 2020, doi: 10.1007/s40544-019-0351-x.

J. Xu, K. Wang, M. Gao, Z. Tu, S. Zhang, and J. Tan, “Biomechanical performance design of joint prosthesis for medical rehabilitation via generative structure optimization,” Comput Methods Biomech Biomed Engin, pp. 1163–1179, 2020, doi: 10.1080/10255842.2020.1789970.

A. Ait Moussa, J. Fischer, R. Yadav, and M. Khandaker, “Minimizing Stress Shielding and Cement Damage in Cemented Femoral Component of a Hip Prosthesis through Computational Design Optimization,” Adv Orthop, vol. 2017, 2017, doi: 10.1155/2017/8437956.

Rufus. Fraanje and Hidde. Duivenvoorden, Proceedings of the 2018 19th International Conference on Research and Education in Mechatronics (REM 2018) : the Hague University of Applied Sciences, Delft, the Netherlands, June 7-8, 2018. IEEE, 2018.

L. Fanton et al., “Hip joint replacement based on linear cylindrical articulations for reduced wear: A radical change in design,” Invention Disclosure, vol. 4, p. 100030, 2024, doi: 10.1016/j.inv.2024.100030.

A. Ruggiero, M. Merola, and S. Affatato, “Finite element simulations of hard-on-soft hip joint prosthesis accounting for dynamic loads calculated from a Musculoskeletal model during walking,” Materials, vol. 11, no. 4, Apr. 2018, doi: 10.3390/ma11040574.

C. González-Bravo, M. A. Ortega, J. Buján, B. De La Torre, and L. Barrios, “Personalized Medicine Wear Risk Prevention and Reduction in Total Hip Arthroplasty. A Personalized Study Comparing Cement and Cementless Fixation Techniques Employing Finite Element Analysis,” J. Pers. Med, p. 780, 2021, doi: 10.3390/jpm.

Y. T. Lin, J. S. S. Wu, and J. H. Chen, “The study of wear behaviors on abducted hip joint prostheses by an alternate finite element approach,” Comput Methods Programs Biomed, vol. 131, pp. 143–155, Jul. 2016, doi: 10.1016/j.cmpb.2016.04.015.

A. Namvar et al., “Finite element analysis of patient-specific additive-manufactured implants,” Front Bioeng Biotechnol, vol. 12, 2024, doi: 10.3389/fbioe.2024.1386816.

L. Maslov et al., “Some aspects of custom-made 3d-printed hip joint implant structural simulation,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing Ltd, Dec. 2020. doi: 10.1088/1757-899X/986/1/012035.

D. Milone, D. D’Andrea, and D. Santonocito, “Smart Design of Hip Replacement Prostheses Using Additive Manufacturing and Machine Learning Techniques,” Prosthesis, vol. 6, no. 1, pp. 24–40, Feb. 2024, doi: 10.3390/prosthesis6010002.

L. Risse, S. Woodcock, J. P. Brüggemann, G. Kullmer, and H. A. Richard, “Stiffness optimization and reliable design of a hip implant by using the potential of additive manufacturing processes,” Biomed Eng Online, vol. 21, no. 1, Dec. 2022, doi: 10.1186/s12938-022-00990-z.

R. M. Cowie and L. M. Jennings, “Third body damage and wear in arthroplasty bearing materials: A review of laboratory methods,” Dec. 01, 2021, Elsevier Ltd. doi: 10.1016/j.bbiosy.2021.100028.

A. Fouly, M. Taha, T. Albahkali, M. A. Shar, H. S. Abdo, and A. Nabhan, “Developing Artificial Intelligence Models for Predicting the Tribo-Mechanical Properties of HDPE Nanocomposite Used in Artificial Hip Joints,” IEEE Access, vol. 12, pp. 14787–14799, 2024, doi: 10.1109/ACCESS.2024.3352448.

D. Milone, G. Risitano, A. Pistone, D. Crisafulli, and F. Alberti, “A New Approach for the Tribological and Mechanical Characterization of a Hip Prosthesis Trough a Numerical Model Based on Artificial Intelligence Algorithms and Humanoid Multibody Model,” Lubricants, vol. 10, no. 7, Jul. 2022, doi: 10.3390/lubricants10070160.

Y. Liu et al., “Self-powered artificial joint wear debris sensor based on triboelectric nanogenerator,” Nano Energy, vol. 85, Jul. 2021, doi: 10.1016/j.nanoen.2021.105967.


Refbacks

  • There are currently no refbacks.