
Author
Azza Farichi Tjahjono(1), Hasan Hasan(2

(1) Institut Teknologi Sepuluh Nopember, Indonesia
(2) Institut Teknologi Sepuluh Nopember, Indonesia
(3) Institut Teknologi Sepuluh Nopember, Indonesia
(4) Institut Teknologi Sepuluh Nopember, Indonesia
(5) Institut Teknologi Sepuluh Nopember, Indonesia

Article Analytic |
Available online: 2025-07-10 | Published : 2025-07-10
Copyright (c) 2025 Hasan Hasan
Article can trace at:
Article Metrics
Abstract Views: 63 times
PDF Downloaded: 43 times
Abstract
Keywords
References
Ahammad, S. H., Kale, S. D., Upadhye, G. D., Pande, S. D., Babu, E. V., Dhumane, A. V., & Bahadur, M. D.K. J. (2022). Phishing URL detection using machine learning methods. Advances in Engineering Software, 173, 103288. https://doi.org/10.1016/j.advengsoft.2022.103288
Anggoro, D. A., & Mukti, S. S. (2021). Performance Comparison of Grid Search and Random Search Methods for Hyperparameter Tuning in Extreme Gradient Boosting Algorithm to Predict Chronic Kidney Failure. International Journal of Intelligent Engineering & Systems, 14(6). https://doi.org/10.22266/ijies2021.1231.19
Anitha, J., & Kalaiarasu, M. (2022). A new hybrid deep learning-based phishing detection system using MCS-DNN classifier. Neural Computing and Applications, 34(8), 5867-5882. https://doi.org/10.1007/s00521-021-06717-w
Arik, S. Ö., & Pfister, T. (2021, May). Tabnet: Attentive interpretable tabular learning. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, No. 8, pp. 6679-6687). https://doi.org/10.1609/aaai.v35i8.16826
Ashfaq, S., Chandre, P., Pathan, S., Mande, U., Nimbalkar, M., & Mahalle, P. (2023). Defending against vishing attacks: A comprehensive review for prevention and mitigation techniques. In International Conference on Recent Developments in Cyber Security (pp. 411-422). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-9811-1_33
Basit, A., Zafar, M., Liu, X., Javed, A. R., Jalil, Z., & Kifayat, K. (2021). A comprehensive survey of AI enabled phishing attacks detection techniques. Telecommunication Systems, 76, 139-154. https://doi.org/10.1007/s11235-020-00733-2
Bountakas, P., & Xenakis, C. (2023). Helphed: Hybrid ensemble learning phishing email detection. Journal of Network and Computer Applications, 210, 103545. https://doi.org/10.1016/j.jnca.2022.103545
Catal, C., Giray, G., Tekinerdogan, B., Kumar, S., & Shukla, S. (2022). Applications of deep learning for phishing detection: a systematic literature review. Knowledge and Information Systems, 4(6), 1457-1500. https://doi.org/10.1007/s10115-022-01672-x
Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp 885-794). https://doi.org/10.1145/2939672.2939785
Chiew, K. L., Tan, C. L., Wong, K., Yong, K. S., & Tiong, W. K. (2019). A new hybrid ensemble feature selection framework for machine learning-based phishing detection system. Information Sciences, 484, 153-166. https://doi.org/10.1016/j.ins.2019.01.064
de Rancourt-Raymond, A., & Smaili, N. (2023). The unethical use of deepfakes. Journal of Financial Crime, 30(4), 1066-1077. https://doi.org/10.1108/JFC-04-2022-0090
Dewis, M., & Viana, T. (2022). Phish responder: A hybrid machine learning approach to detect phishing and spam emails. Applied System Innovation, 5(4), 73. https://doi.org/10.3390/asi5040073
Do, N. Q., Selamat, A., Krejcar, O., Herrera-Viedma, E., & Fujita, H. (2022). Deep learning for phishing detection: Taxonomy, current challenges and future directions. Ieee Access, 10, 36429-36463. https://doi.org/10.1109/ACCESS.2022.3151903
El-Metwaly, A. E. S., Bedair, M. R., Abdallah, S. T., Mahmoud, A. M., Mohamed, M. E., Mahmoud, M. E., & Takieldeen, A. E. (2024, July). Detection of Phishing URLs Based on Machine Learning and Cybersecurity. In 2024 International Telecommunications Conference (ITC-Egypt) (pp. 394-398). IEEE. https://doi.org/10.1109/ITC-Egypt61547.2024.10620574
Hanifi, S., Cammarono, A., & Zare-Behtash, H. (2024). Advanced hyperparameter optimization of deep learning models for wind power prediction. Renewable Energy, 221, 119700. https://doi.org/10.1016/j.renene.2023.119700
Jain, A. K., & Gupta, B. B. (2022). A survey of phishing attack techniques, defence mechanisms and open research challenges. Enterprise Information Systems, 16(4), 527-565. https://doi.org/10.1080/17517575.2021.1896786
Karim, A., Shahroz, M., Mustofa, K., Belhaouari, S. B., & Joga, S. R. K. (2023). Phishing detection system through hybrid machine learning based on URL. IEEE Access, 11, 36805-36822. https://doi.org/10.1109/ACCESS.2023.3252366
Lin, Y., Liu, R., Divakaran, D. M., Ng, J. Y., Chan, Q. Z., Lu, Y., ... & Dong, J. S. (2021). Phishpedia: A hybrid deep learning based approach to visually identify phishing webpages. In 30th USENIX Security Symposium (USENIX Security 21) (pp. 3793-3810).
López, V., Fernández, A., & Herrera, F. (2014). On the importance of the validation technique for classification with imbalanced datasets: Addressing covariate shift when data is skewed. Information Sciences, 257, 1-13. https://doi.org/10.1016/j.ins.2013.09.038
Maulani, G., Hasan, F. N., Setiawan, D., Bowo, I. T., Ardhana, V. Y. P., Ramdhani, Y., Safitri, R. (2025). Machine Learning. MEGA PRESS NUSANTARA.
NaliniPriya, G., Damoddaram, K., Gopi, G., & Nitish Kumar, R. (2023, February). Phishing attack detection using machine learning. In International Conference on Emerging Trends in Expert Applications & Security (pp. 301-312). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-1946-8_27
Naqvi, B., Perova, K., Farooq, A., Makhdoom, I., Oyedeji, S., & Porras, J. (2023). Mitigation strategies against the phishing attacks: A systematic literature review. Computers & Security, 132, 103387. https://doi.org/10.1016/j.cose.2023.103387
Naseer, M., Ullah, F., Saeed, S., Algarni, F., & Zhao, Y. (2025). Explainable TabNet ensemble model for identification of obfuscated URLs with features selection to ensure secure web Browse. Scientific Reports, 15(1), 9496. https://doi.org/10.1038/s41598-025-93286-w
Nayak, G. S., Muniyal, B., & Belavagi, M. C. (2025). Enhancing Phishing Detection: A Machine Learning Approach With Feature Selection and Deep Learning Models. IEEE Access. https://doi.org/10.1109/ACCESS.2025.3543738
Norton, M., & Uryasev, S. (2019). Maximization of auc and buffered auc in binary classification. Mathematical Programming, 174, 575-612. https://doi.org/10.1007/s10107-018-1312-2
Park, J. Y., & Kim, T. S. (2025). An Automated Scenario Generation Model for Anti-phishing using Generative AI. In 2025 IEEE International Conference on Big Data and Smart Computing (BigComp) (pp. 368-370). IEEE. https://doi.org/10.1109/BigComp64353.2025.00073
Sahingoz, O. K., Buber, E., Demir, O., & Diri, B. (2019). Machine learning based phishing detection from URLs. Expert Systems with Applications, 117, 345-357. https://doi.org/10.1016/j.eswa.2018.09.029
Schmitt, M., & Flechais, I. (2024). Digital deception: Generative artificial intelligence in social engineering and phishing. Artificial Intelligence Review, 57(12), 1-23. https://doi.org/10.1007/s10462-024-10973-2
Yang, R., Zheng, K., Wu, B., Wu, C., & Wang, X. (2021). Phishing website detection based on deep convolutional neural network and random forest ensemble learning. Sensors, 21(24), 8281. https://doi.org/10.3390/s21248281
Zhu, E., Chen, Z., Cui, J., & Zhong, H. (2022). MOE/RF: a novel phishing detection model based on revised multiobjective evolution optimization algorithm and random forest. IEEE Transactions on Network and Service Management, 19(4), 4461-4478. https://doi.org/10.1109/TNSM.2022.3162885
Refbacks
- There are currently no refbacks.